
CLL Crash Course

Leif Johnson

November 1, 2024

1 Notation

� window � a group of pixels in the image. A window is usually denoted
with the letter A.

� A � A collection of windows.

� C � set of colors in the image. ncolor = nc =| C |. In practice C =
{1, . . . , nc}.

� CA � set of possible arrangements of colors in window A. What this
set is depends on the size and shape of A, and the number of colors
in C. We frequently enumerate the elements of CA as c1, . . . , c|C||A| or
y1, . . . , y|C||A| . c1 is taken to be the �base case�.

� θ � the parameter for the model.

� t(x) � the canonical statistic for the model, tc1(x), . . . , tc|C|(x) are the
number of pixels that match the corresponding colors. t∗(x) is the
number of pixel neighbor pairs that have the same color.

2 CLL Basics

Composite Likelihood (CL) is a method of approximating the Likelihood,
used when maximizing the Likelihood would be unfeasible using normal
methods. Instead we calculate the Maximum Composite Likelhood Esti-
mator (MCLE), which approaches the MLE in the limit. We do all of the
maximizing on the log scale.

In the potts setting, the image is �rst divided up into a collection of
windows, A. The Likelihood is approximated by multiplying the conditional
PMFs for each window together. This is the Composite Likelihood. For each

1

A ∈ A, CA is the set of possible colors to �ll window A. Then for A ∈ A
the conditional PMF for A is

fA(xA | Rest) =
f(xA ∪Rest)∑
y∈CA f(y ∪Rest)

=
e⟨t(xA∪xL\A),θ⟩∑
y∈CA e⟨t(y∪xL\A),θ⟩ .

We calculate the MCLE by maximizing the Composite Log Likelihood
(CLL), given by

logA(θ) =
∑
A∈A

log(fA(xA | Rest)) (1)

3 Identi�ability

It should be noted that the model is not identi�able, as we have the
constraint ∑

c∈C
tc(x) = nrow ∗ ncol

We solve this issue by assuming the parameter for the �rst color to be zero,
and dropping the appropriate statistic whenever we are doing calculations.

4 Realizing a model

> library(potts)

> nrow <- 32

> ncol <- 32

> ncolor <- 4

> theta.true <- rep(0, ncolor+1)

> theta.true[ncolor+1] <- log(1 + sqrt(ncolor))

> x <- matrix(sample(ncolor, nrow*ncol, replace=TRUE), nrow=nrow,

+ ncol=ncol)

> out <- potts(packPotts(x, ncolor), theta.true, nbatch=1000, blen=1)

> x <- unpackPotts(out$final)

The realized image for this run is given in �gure 1.
If we are going to estimate some MCLE's, we need to calculate the

canonical statistics for all of the windows. The functions composite.ll and
gr.composite.ll calculate (1) and the gradient of (1) respectively. They each
take three arguments

2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1: Realized Potts Image

� theta � the value of θ to evaluate.

� t_stat � the value of the canonical statistic for the entire image

� t_cache � three dimensional array. Index 1 goes across elements of A.
Index 2 goes across the elements of CA. Hence t_cache[i,j,] contains
t(yj ∪Rest) for the ith element of A.

So before we can calculate the CLL, we need to calculate canonical stais-
tics.

5 Calculating Canonical Statistics

To calculate (1) we need to calculate the value of t(y ∪ Rest) for all
y ∈ CA for all A ∈ A. Before we calculate any, we will load the library and

3

generate an image to work on.
Once we have the image, we can calculate t(x) using the function, calc_t.

> t_stat <- calc_t(x, ncolor)

> t_stat

1 2 3 4 *

83 818 76 47 1560

Next we need to calculate t_cache, however, this calculation depends on
what collection of windows we are going to use. For this Vignette, we are
going to use two collections

1. The collection of all singletons. This corresponds to Besag's Pseudo-
likelihood, so we will actually be calculating the MPLE.

2. The collection consisting of non-overlapping windows of horizontal
pixel pairs.

The next code chunk shows how to calculate the t_cache for these col-
lections, and to see the value of t(y ∪Rest) across the �rst window.

> t_cache_mple <- generate_t_cache(x, ncolor, t_stat, nrow*ncol, 1,

+ singleton)

> t_cache_mple[[1]]

[,1] [,2] [,3] [,4]

[1,] 817 76 47 1556

[2,] 818 76 47 1560

[3,] 817 77 47 1556

[4,] 817 76 48 1556

> t_cache_two <- generate_t_cache(x, ncolor, t_stat, nrow*ncol/2, 2,

+ twopixel.nonoverlap)

> t_cache_two[[1]]

[,1] [,2] [,3] [,4]

[1,] 816 76 47 1554

[2,] 817 76 47 1556

[3,] 816 77 47 1553

[4,] 816 76 48 1553

[5,] 817 76 47 1556

4

[6,] 818 76 47 1560

[7,] 817 77 47 1556

[8,] 817 76 48 1556

[9,] 816 77 47 1553

[10,] 817 77 47 1556

[11,] 816 78 47 1554

[12,] 816 77 48 1553

[13,] 816 76 48 1553

[14,] 817 76 48 1556

[15,] 816 77 48 1553

[16,] 816 76 49 1554

6 Calculating the CLL

Once we have calculated the canonical statistics, we can use them to
evaluate and/or optimize the CLL. We can �rst compute the value of the
CLL at the known parameter value.

> composite.ll(theta.true[-1], t_stat, t_cache_mple)

[1] -521.3203

> gr.composite.ll(theta.true[-1], t_stat, t_cache_mple)

[1] -4.765179 2.870536 -3.562798 -34.546429

> composite.ll(theta.true[-1], t_stat, t_cache_two)

[1] -535.0216

> gr.composite.ll(theta.true[-1], t_stat, t_cache_two)

[1] -7.249420 3.268428 -4.610464 -34.710994

Or we could optimize it using the usual techniques.

> theta.initial <- 1:ncolor

> optim.mple <- optim(theta.initial, composite.ll, gr=gr.composite.ll,

+ t_stat, t_cache_mple, method="BFGS",

+ control=list(fnscale=-1))

> optim.mple$par

5

[1] 0.05803929 -0.04987126 -0.21090946 1.00276193

> optim.two <- optim(theta.initial, composite.ll, gr=gr.composite.ll,

+ t_stat, t_cache_two, method="BFGS",

+ control=list(fnscale=-1))

> optim.two$par

[1] 0.002417458 -0.069260004 -0.230187830 1.019289458

> theta.true

[1] 0.000000 0.000000 0.000000 0.000000 1.098612

If your system has the multicore installed, you can take advantage by
passing mclapply in as the fapply argument to the CLL family of functions.

library(multicore)

t_stat <- calc_t(x, ncolor)

t_cache_mple <- generate_t_cache(x, ncolor, t_stat, nrow*ncol, 1,

singleton, mclapply)

theta.initial <- 1:ncolor

optim.mple <- optim(theta.initial, composite.ll, gr=gr.composite.ll,

t_stat, t_cache_mple, mclapply, method="BFGS",

control=list(fnscale=-1))

optim.mple$par

6

